Paylas-TR


Yeni Konu aç Cevapla
 
LinkBack Seçenekler Arama Stil
Alt 02 Ekim 2008, 01:16   #1 (permalink)
Bundan sonra diLim LâL
 
aŞk-ı LâL - ait Kullanıcı Resmi (Avatar)
 
  Date: 10 Eylül 2008
 Mesajlar: 30,893
Standart 1. dereceden 1 bilinmeyenli denklemler

Birinci dereceden bir
bilinmeyenli denklemler

ve a 0 olmak üzere ax +b=0 şeklindeki eşitliklere birinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan x sayısına denklemin kökü, bu kökün oluşturduğu kümeye çözüm kümesi denir.

ax+b=0 ise sayısı denklemin köküdür.

Çözüm kümesi:

Ç= olur.

Örnekler:

1) 6x +12 =0 denkemini çözüm kümesini bulunuz.

Çözüm:

6x= -126x+12=0
x= x=-2 Ç= olur.
2)-5x + 6 + x = 1 –x + 8 denkleminin çözüm kümesini bulunuz.

Çözüm:

-5x+ 6+ x =1 –x +8
-4x + 6 = -x + 9
-4x +x = 9-6
-3x=3
x= -1 Ç=
3) denkleminin çözüm kümesini bulunuz.
Çöm: denklemde paydası eşitlenir:



4) x-{2x-[x+1-(3x-5)]} = 3 ise x kaçtır?
Çözüm:

[x+1-3x+5]
[-2x+6]
{2x+2x-6}
x-4x+6 = 3
x= 1 Sonuç: 1-3x =

5) 9(1-2x) – 5(2-5x) = 20 denkleminin çözüm kümesi nedir?
Çözüm:

9(1-2x) – 5(2-5x) = 20
9-18x-10+25x = 20
7x-1= 20
7x = 21
x = 3
Sonuç: 3

6) x 2 x 1
----- + ----- = ----- + 1----- denkleminin çözüm kümesi nedir?
3 5 5 3

Çözüm:
x 2 x 4
----- + ----- = ----- + -----
3 5 5 3
(5) (3) (3) (5)

5x+6 3x+20
------- = ------- = 5x + 6 = 3x+20
15 15

x = 7 Sonuç: 72x = 14


7) Kendisine katı eklendiğinde 72 eden sayı kaçtır?

Çözüm:


=
8) 2x+5=1 ise “x” kaçtır?

Çözüm:
2x = -4
Sonuç = {-2}x = -2

9) Toplamları 77 olan iki sayıdan birinin 3 katı, aynı sayının 4 katıyla toplamına eşittir.Bu Sayıların Küçük Olanı Kaçtır?

Çözüm:

3x+4x = 77
7x = 77
x = 7
3x = 33 Sonuç = {33}

10) Bu denklemdeki x’ in değerini bulunuz.
Çözüm:





x = 5 Sonuç = {5}

11) “x” in değerini bulunuz.
Çözüm:




- 45 = 5x-35
5x = -10
x = -2

Sonuç = {-2}

12) “x” in değerini bulunuz.

Çözüm:


3x-5 = -20
3x = -15
x = -5 Sonuç = {-5}

13) denklemini ve koşuluyla x’i bulunuz.
Çözüm

x=-1 fakat (x 1 ve x koşulundan dolayı

Ç=Ǿdir

14) için x ’in değeri kaçtır?
Çözüm
x=3 (x 3 koşulundan dolayı )

Ç=Ǿdir


Birinci Dereceden İki
Bilinmeyenli Denklemler

olmak üzere açık önermesine birinci dereceden iki bilinmeyenli denklem denir.
denkleminde x ’e verilebilecek her değer için bir y değeri bulunabilir. Bulunan (x,y) ikililerinden her birine denklemin bir çözümü denir. Çözüm kümesi sonsuz elamanlıdır.

Örnekler:

1) denklemini çözüm kümesini bulup düzlemde göster.

(0,-1)x=0 için y=2.0-1
(1,1)x=1 için y=2.1-1
(2,3)x=2 için y=2.2-1
(3,5)x=3 için y=2.3-1
(y 2x –1)x için y=2x-1




" Taklitlerasıllarınıyüceltir. "
Saygı duyulacak bir tarafınız varsa... O tarafınıza saygılarımla!
Resmi Tam Boyutta Görmek için Tıklayın.✿*゚¨゚✎
Resmi Tam Boyutta Görmek için Tıklayın.

Resmi Tam Boyutta Görmek için Tıklayın.



_"ikinci el övgü tüccarları varsın bol bol konuşsun benim satacak malım yok ki övgüye ihtiyacım olsun"

Resmi Tam Boyutta Görmek için Tıklayın.
Şimdi Sularında Sessiz Bir Gemiyim Ben
Gözlerinin Derinliğinde
Yol Alan..

Deniz Mavide, Bulut Beyazda, Yıldız Gecede..
(Sevdam Sabıkamdır...)
aŞk-ı LâL isimli Üye şimdilik offline konumundadır  
Alıntı ile Cevapla
Yeni Konu aç Cevapla

Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Bookmarks

Tags
bilinmeyenli, denklemler, dereceden
Seçenekler Arama
Stil